Reduced Order Modeling of Turbulent Flows

MAE 252B: Final Presentation

Maziar Hemati

Department of Mechanical and Aerospace Engineering
University of California–Los Angeles
Los Angeles, California 90024

Thursday, June 5, 2008
Reduced Order Models
- What are they?
- Why do we care?

Flow Control
- An overview
- An example of turbulence control

Concluding Remarks
The Navier-Stokes equations can be expressed differently based on flow conditions.

Examples:

1. Potential Flow Analysis
2. Vortex Methods
3. Boundary Layer Equations
4. Euler Equations
5. RANS
6. LES
Mathematical ROM

Now instead of neglecting “higher-order” physical quantities, we neglect “higher-order” basis functions.

Objective:
Capture the essential physics at play, while reducing the expense of solving the governing equations.

ROMs require the solution of the flow-field *a priori* and do not capture *all* of the flow physics. As such, they are a poor choice for simulations.
On the Meaning of “Low-Dimensional”

We wish to represent an infinite-dimensional PDE as a low-dimensional system of ODEs.

NOTE: Low-Dimensional

“Low” in the context of fluid mechanics, *not* dynamical systems.

For example:

- Low-dimensional model $\sim (10 - 100)$
- Turbulent flow representation $\sim (\text{Re}^\frac{9}{4})$
On the Meaning of “Low-Dimensional”

We wish to represent an infinite-dimensional PDE as a low-dimensional system of ODEs.

NOTE: Low-Dimensional

“Low” in the context of fluid mechanics, *not* dynamical systems.

For example:
- Low-dimensional model $\sim (10 - 100)$
- Turbulent flow representation $\sim (Re^9)$
Applications
Understanding Fundamental Mechanisms of Turbulence

Motivation:
1. No closed form solution of Navier-Stokes in \mathbb{R}^3 exists.
2. Low-dimensional models can be analyzed using dynamical systems theory.

Useful in the study of:
1. Coherent structures
2. Bursting and sweeping processes
3. Simple flows
 - jets
 - wakes
4. shear layers
5. boundary layers
Applications
Understanding Fundamental Mechanisms of Turbulence

Motivation:
1. No closed form solution of Navier-Stokes in \mathbb{R}^3 exists.
2. Low-dimensional models can be analyzed using dynamical systems theory.

Useful in the study of:
1. Coherent structures
2. Bursting and sweeping processes
3. Simple flows
 - jets
 - wakes
 - shear layers
 - boundary layers
Applications
Turbulent Flow Control

Motivation:
1. Control system design models need only an input-output description of the flow.
2. Low-dimensional models are computationally inexpensive.
3. Many aspects of the flow we wish to control can be analyzed by the methods discussed here.

Useful for:
1. Controller design
2. Estimator design and implementation
3. Flow-field reconstruction
Motivation:

1. Control system design models need only an input-output description of the flow.
2. Low-dimensional models are computationally inexpensive.
3. Many aspects of the flow we wish to control can be analyzed by the methods discussed here.

Useful for:

1. Controller design
2. Estimator design and implementation
3. Flow-field reconstruction
Definition: *Flow Control*

The notion of achieving a desired objective as a function of space and time by some means of flow manipulation.

Classifications:

1. Passive
2. Active
 - Open-Loop
 - Closed-Loop
Flow Control

Control for Drag Reduction (Prabhu et al. 2001)

Consider:

- Turbulent flow between parallel walls.
 - Fully developed
 - Incompressible
- Active control using wall-transpiration.
 - Opposition control
 - Optimal control
Some notation before we get started:

All quantities are nondimensionalized using:
- Reference length scale: channel half-width, δ^*
- Reference velocity: friction velocity, $u_\tau^* = (\tau_w^* / \rho^*)^{1/2}$

Note: τ_w^* is the average wall shear-stress and an asterisk (*) denotes *dimensional* quantities.

Derived quantities:
- Convective time scale: $t = \delta^* / u_\tau^*$
- Reynolds number: $Re_\tau = u_\tau^* \delta^* / \nu^*$
- Wall units: $y^+ = y Re_\tau$ and $t^+ = t Re_\tau$
Flow Control
Control for Drag Reduction (Prabhu et al. 2001)

Opposition Control
Sense the presence of near-wall coherent structures and suppress them by opposing their motion through suction or blowing.

Wall sensing is performed at $y^+ = 16$.

Optimal Control
Minimize a cost-functional that targets the turbulent kinetic energy at the end of a time window T.

Requires complete knowledge of the flow-field. The time window used is $T^+ = 36$.
Flow Control
Control for Drag Reduction (Prabhu et al. 2001)

Drag histories for turbulent channel flow
\((Re_T = 180)\)

- **Opposition control**: 25% drag reduction
- **Optimal control**: 40% drag reduction

Courtesy of Prabhu et al. (2001).
Concluding Remarks

Reduced order models do not provide a complete solution to the “problem of turbulence.”

But, as we have seen, they provide a useful approach for:

- Analyzing the behavior of turbulent flows with predominant coherent structures;
- Creating efficient and acceptable models for flow control and estimation.
References I

O.M. Aamo and M. Krstic.
Flow Control by Feedback.

J.A. Atwell and B.B. King.
Reduced order controllers for spatially distributed systems via proper orthogonal decomposition.

Reduced order modeling of complex systems.

A. Chaterjee.
An introduction to the proper orthogonal decomposition.

H. Grandin.
Fundamentals of the Finite Element Method.

M.D. Gunzburger, editor.
Flow Control.

Observed mechanisms for turbulence attenuation and enhancement in opposition-controlled wall-bounded flows.
P. Holmes, J.L Lumley, and G. Berkooz and.
Turbulence, Coherent Structures, Dynamical Systems and Symmetry.

Low-dimensional models of coherent structures in turbulence.

J. Kim and T.R. Bewley.
A linear systems approach to flow control.
References V

J. Lumley and P. Blossey.
Control of turbulence.

P. Moin and T. Bewley.
Feedback control of turbulence.

K. Pearson.
On lines and planes of closest fit to systems of points in space.
Philosophical Magazine, 2:559–572, 1901.

B. Podvin and J. Lumley.
Reconstructing the flow in the wall region from wall sensors.
The influence of control on proper orthogonal decomposition of wall-bounded flows.

S.S. Ravindran.
Reduced-order controllers for control of flow past an airfoil.

D. Rempfer.
On low-dimensional galerkin models for fluid flow.
